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Graph Colormg Games ‘
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Let’s play a game. We start with the graph featured in Figure 0 and three colors; red,
blue, and green. This is a two player game. The goal of Player One is to color every vertex so
that no two colors are adjacent to each other. Player Two is attempting to make it so that
Player One cannot color every vertex. Below is an example of how the game could turn out.

Figure 2

Figure 3

As shown above in Figure 1, Player. One begins by coloring vertex 4 red. Player Two then
colors vertex 6 with green. Player One’s response is to color vertex 5 with blue. Vertices 1, 2,
and 3 may be colored with either green or blue because they are adjacent to only the color red
as seen in Figure 4.
Consider the following strategy for Player One:

» Initially color vertex 4 red.
o If Player Two colors vertex 1, 2, or 3, color vertex 5 blue.

o If Player Two colors vertex 5, color vertex 6 red.
o If Player Two colors vertex 6, color vertex 5 with blue or green.
e After Player One’s second move all remaining uncolored vertices are connected
to at. most one other vertex. Color accordingly; red, blue, green.

By coloring vertex 4, Player One has colored the only vertex that is connected to more than 2
other vertices. At most Player Two will be able to have two different colors connect to one
uncolored vertex by coloring vertex 6. Hence, the above strategy ensures a win for Player One.

Let’s try another game with the same graph but this time we’re only going to use two
colors, red and green. Player One initially colors vertex 4 red. Player Two then colors vertex 6
green as we see in Figure 2. However, at this point it is not possible for Player One to color
vertex 5 green or red because it is adjacent to both available colors. Showing that Player Two
has a winning strategy requires a more in-depth analysis of all the possible ways this game can
be played. We need to consider every move Player One might make.



e Player One colors vertex 1, 2, or 3. Player Two’s response is to color vertex 5 with the
opposite color.

e Player One colors vertex 4. Player Two’s response is to color vertex 6 with the opp05|te
color.

e Player One colors vertex 5. Player Two's response is to color vertex 1,2, or 3 W|th the
opposite color.

e Player One colors vertex 6. Player Two's response is to color vertex 4 with the opposite
color.

Player Two's first move in all these situations presents Player One with an uncolored
vertex connected to both available colors. At this point Player Two has accomplished his goal of
preventing the other player of coloring the entire graph. Therefore the scenarios listed above
prove that the described strategy is a winning strategy for Player Two because in every way the
game can be played he has a response that leaves a vertex uncolorable.

Rules & Terminology

A graph consists of a set of vertices, V, and a set of edges, E. An edge is a pair of
vertices. . Visually, we denote circles for vertices and lines for edges. Let G be the graph in
Figure O, therefore V={1,2,3,4,5,6} and E = {{1,4},{2,4},{3,4},{4,5},{5,6}}. Two vertices connected
by an edge are said to be adjacent. Let {a,b} be an edge. This means vertices a and b are
adjacent. If a and b are adjacent vertices then the edge connecting them is said to be incident
toaandb. A subgraph of a graph G is a graph whose vertex and edge set is a subset of that of G

{_thatstilF-maintains-all G’s-propert

' _s;p_cgpemegl The degree of a vertex is the number of edges incident to
that vertex. The degree of vertex 5 is 2. A vertex of degree 1 is defined as a leaf. In Figure 5
vertices 1,2,3,6 are leaves because they are all of degree one.

A walk from vertex a to b is an alternatmg Ilst of vertices and edges in which
each edge is incident with the vertices that come before and after it. A walk from(\ﬂertex 6to2
can be shown as w{652) =6, {6,5}, 5, {5,4}, 4, {4,2}, 2. We define the length of the walk, w, by
the number of‘edges in the walk. The length of w = 3 because it crosses three edges; {5,6},{4,5},
and {2,4}. The walk shown from vertex 6 to 4 is also as a path. A path is a walk in which no
vertex appears more than once. Paths can be written as an alternating list of vertices only. The
path from vertex 6to 2is (6 -> 5 -> 4 -> 2)

Graph coloring games are comprised of a set of colors and a graph that two
players compete to color. The goal, for Player One, is to color every vertex using the set of
colors given so that no two adjacent vertices share the same color. In Figure 2 it would be an
illegal move for Player One to color vertex 5 with either red or green. Player Two’s goal is to



color the graph in a way that there are uncolorable vertices. An uncolorable vertex is an open
vertex that is adjacent to every color available to the players.
A strategy is a complete and unambiguous description of what to do in every possible
situation. A winning strategy is a strategy that will guarantee a win for the player using it, oYy 3@\\5 N
regardless of what strategy the opposing player is using. In both games we played, each player
has a winning strategy. We shaged 1o Proeery gerbvun Pl Plings O o hen AN Ahv\lﬂ fe h“'j
The chromatic number of a particular graph is the fewest number of colors necessary to cxm oA
be able to color every vertex with no adjacent vertices being the same color. For example, the Q«\m
chromatic number of the graph below is 2. This is more formally written as x(G) = 2, where Gis F?b‘"”“o)
the graph being analyzed. There is only one case where a graph would have a chromatic am PT - n
number less than 2. This is the where the graph contains only one vertex, therefore coloring the
entire graph requires only one color.

Theorem 0: If G is a graph with at least two adjacent vertlces then x(G) 22

Proof.
Suppose G is a graph with at least two adjacent vertices. It is impossible for both

vertices to be colored with only one color. Therefore the chromatic number must be greater

than or equal to 2.
Q.E.D.

The game-chromatic number, denoted by the Greek symbol vy, represents the least
number of colors necessary for Player One to have a winning strategy in the corresponding
graph-coloring game. The game-chromatic number of the graph we have shown is 3. This is

shown as y(G) = 3. M Pryrs ©
Theorem 1: y(G) 2 x(G)
Proof

If the game-chromatic number is less than the chromatic number then Player
One has a winning strategy with a smaller set of colors than the graph is able to be colored
with. This is a contradiction therefore the game-chromatic number must be greater than or
equal to chromatic number.

Q.E.D.

Theorem 2: y(G) < N+1, where N is the max degree of the graph.
Proof
Let G be a graph. Consider the graph-coloring game on G with K = N + 1 colors where N is the
max degree of G. That means, at most it is possible for N different colors to be adjacent to one
vertex. If Player One has at least N+1 different colors available for the game it is impossible to
create an uncolorable vertex therefore the game-chromatic number will never be greater than

N+ 1.



Path Graphs
A path graph is a graph that can be drawn such that all vertices lie in a single straight
line. A path graph, B,, with n vertices has 2 leaves and n-2 vertices all of degree 2. For example,
the figure below is a Path graph with 7 vertices; therefore there are 2 leaves and 5 vertices of
degree 2. The leaves are marked blue, and the remaining degree 2 vertices are marked green.
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Figure Path
In an attempt to fully characterize path graphs we separate the class into three different
categories.
Theorem 3:y(P;) =1,y(P,) = y(P3) =2,and y(B,) =3ifn > 4
Proof.

Suppose G is a path graph. Analyzing a graph-coloring game using the variable
graph G, we will determine the different game-chromatic numbers of path graphs.

®

Figure 11

Let G = P; then G is a graph with only one vertex. Player One’s winning strategy is to
color vertex 1. Therefore the game-chromatic number is 1. -

O O

Figure 12 Figure 13
Let G = P, then G is a graph with two vertices. Player One needs to have at least two colors

available to him/her to have a winning strategy.
e Color Vertex 1 with the first color, Player 2 must color vertex 2 color 2.
Let G = P;. Player One needs to have at least two colors available to him/her to have a winning

strategy.
- o Color Vertex 2 with the first color. Vertex 3 and 1 may then both be colored by the

second color.
Therefore it is sufficient for Player One to have a winning strategy if there are only 2 colors

available in the corresponding graph-coloring game.

(N3
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Let G = P, andn = 4. Suppose y(P,) = 2. Player One will attempt the following

strategy.
e Initially color vertex 1
o Player Two colors vertex 3 the opposite color.
e Initially color vertex 2
o Player Two colors vertex 4 the opposite color.
e Initially color vertex 3
o Player Two colors vertex 1 the opposite color.




e Initially color vertex 4
o Player Two colors vertex 2 the opposite color.

In each case, if only two colors are available to Player One he/she will lose therefore the
game-chromatic number must be at least 3. Player One has a winning strategy with 3 colors
because the max degree of G is 2. It is not possible for Player Two to create an uncolored vertex
with three different colors adjacent to it.

Q.E.D

Theorem 4: If G is a path graph of at least 2 vertices,then x(G) = 2
Proof

Let G be a path graph. Begin coloring one of the leaves and coloring it blue and
coloring every uncolored vertex adjacent to it red. Then color every uncolored vertex adjacent
the red vertices blue. Much like tree graphs, Path graphs have the characteristic of there
existing a unique path between two vertices. Therefore by beginning coloring at the extreme
side of a graph G; each newly colored vertex will adjacent to only one other colored vertex, the
direction from which it came. '

Q.E.D.
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Tree G'raphs

A tree is a graph that for every pair of vertices there exists a unique path between them.
The graph below, Figure S, is a tree. This is because for each pair of vertices there is only one
path between them. For example, between vertices 1 and 6 the path is 1,2,4,6.

Taking a systematic approach we discuss generally the chromatic number, game-
chromatic number, and winning strategies for both Players under a variety of conditions.
Beginning with the most basic trees is the first step in analyzing the class as a
whole. The following are analyses of two basic trees and their properties.

Graph 1:

X(Graph 1) = 2. Visually this is shown above. By coloring the center vertex red, each
remaining open vertex must be colored green.

y (Graph 1) = 2. In order to prove this we must show that Player One has a winning
strategy in a graph-coloring game using graph one and at least two colors.

e |Initially color the center vertex Red
e Color any remaining vertices green.

If Player One initially colors the central vertex red then the remaining vertices are
leaves, who are only adjacent to one vertex, the one that is currently red. Therefore they
cannot be colored red and in order to complete coloring the graph then 2 colors is sufficient for
Player One to win. Player Two is limited to coloring the remaining leaves green. ;



Graph 2:

°

Graph 2

X (Graph 2) = 2. Visually this is shown above. Beginning at the right-most vertex and
coloring it red then alternating between green and red for subsequent adjacent vertices.

v(Graph 2) = 3. The Gamma for Graph 2 must be greater than two. To prove this we
assume that in a graph-coloring game with the corresponding graph and two colors that Player
One has a winning strategy. However, as seen in the example below, regardless of which vertex
is colored by Player One, Player Two has the ability to color a vertex with the opposite color
such that an open vertex is adjacent to both colors.

Graph 2

So we can safely assume that Player Two has a winning strategy in the corresponding graph
with 2 colors. In order to analyze the aspects of this graph more carefully we repeat the graph-
coloring game with the same graph but instead using three colors, red, green, and blue. Player
One has a winning strategy:

e Color Vertex 1 green

e Color remaining vertices with available colors.
This is a winning strategy for Player One because once vertex 1 has been colored there are no
uncolored vertices which are of degree three. Therefore Player Two will never have the
opportunity to create an uncolored vertex adjacent to three different colors.
In the examples of Graph 1 and 2 we saw no variation in the chromatic number of these graphs.
This has to do primarily with the definition of trees themselves. The only case where the
chromatic number of a tree is not 2, is when the graph is a single vertex.



Theorem 5: If G is a tree with more than one vertex, then x(G) = 2.

el \ertex a

Proof .
Let G be a tree. The figure above is an example of such a graph. We begin by coloring an

arbitrary vertex, vertex a, red. Then color each vertex adjacent to a the second color, blue. Next
we color all the vertices adjacent to blue vertices with red. This continues until all vertices are
colored or until we are unable to color with only the two colors.

Let us assume instead that we are unable to color every vertex in G with only 2 colors.
This means that at some point, coloring adjacent vertices, there was an open vertex adjacent to
both colors. This means 2 of the paths that began with vertex a have met at an open vertex on
the graph. Then in this graph there is more than one between any two given vertices. This
shows that G cannot be a tree and therefore a contradiction. ,

By the definition of trees we know there exists a unique path between any vertices in G.
Therefore there exists a unique path from vertex a to every other vertex on the graph. This
means in addition to two colored paths never becoming adjacent to the same open vertex on
the graph, every other vertex has a path to a showing every vertex will at some point be
colored.

Q.E.D

A partially colored tree graph, G, can be divided into what we call components, Given an
uncolored vertex v, the Egmponent that contains V is the maximal subtree for whi? colored
vertices are leaves. A component is a maximal subtree of G that shares one colored vertex and
no uncolored vertices with éﬁ’fé‘éént subtrees. A subtree is a subgraph of a tree. Below is a visual

example that further elucidates what components are. .
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Coloring vertex 4 splits the graph into four unique components that have only one
common vertex

o

Component 1 Component 2 Component 3

We now move into a more general énalysis of trees in graph-coloring games and apply their
results in ways to try and fully characterize the clad.

Theorem 6: If G is a tree, then y(G) < 4

Proof.
Suppose G is a tree. Consider the graph-coloring game using G and a set of colors. We
will show that Player One can always color a vertex so that no components contain more than 2

colored vertices.

Player One’s strategy is:
e If there are no components with one colored vertex, color anywhere. Now all

components will have one colored vertex.
e Ifthere are only components with one or two colored vertices, color adjacent to

a colored vertex in- aene—eela;ed—vept-ex component.

e Ifthereis a component wvtﬁsthree colored vertices, color so that no component
contains more than 2 colored vertices.

We will now go through a graph- coIormg game step-by-step and apply Player One’s
strategy and see the result.

1. Player One colors a vertex and now all components have one color
et Lstron,
2. Player Two colors a vertex and creates one component with two colors/
e Player One colors adjacent to a colored vertex in a one color component, unless e
there are no one color components; For example this would be the case later in T hea 1%
the game where Player Two has made every component have two colored MNBIC, SPLCRTS
P P
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vertices. If so Player One should color adjacent to a colored vertex in a two color
component.

3. Player Two colors a vertex and the graph has several components with one or two
colored vertices and at most one component with three colored vertices.

In order to show Player One has an available move to him we must consider the
following lemma and apply its results to the theorem we are going to prove.

Lemma 1: If X is a component of a tree containing three colored vertices, A, B, and C,
then there exists a unique vertex z such that z can be colored so that each resulting
component contains no more 2 colored vertices.

4,
Path A-D
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Suppose G is a tree, X is a component of G, and A,B,C are three colored vertices in X.
Since colored vertices are leaves of a component, we know every path in X starting from
A begins with at least the first two vertices being identical. On a path from A to Band A
to Cthere exists a vertex P which is the last shared vertex between these two paths.
The paths from P to B and P to C have only one common vertex, P. Indeed,
suppose that instead that the paths P to B and P to C shared a second common vertex Q.
Then B to P to C and B to Q to Q would be two paths from B to C, a contradiction to the
graph being a tree.
Therefore we know that on the paths A to B, Ato C, and B to C there is only one
common vertex, P. In coloring P the graph is split into 3 or more components containing
no more than 2 colored vertices.
Q.E.D.

e Player One colors a vertex in the component with three colored vertices such
that the resulting components contain no more than two colored vertices. There
exists a unique vertex, as shown in Lemma 1, such that Player One can always
turn a three color component into several two and one color components.

This is a full strategy for Player One because in every possible case he/she has a
response to a move done by Player Two. Also as shown in Lemma 1, there is always an available
vertex in which Player Step 3 will be repeated until at some point there are only components
with two colored vertices and no one colored components. However, as seen in Lemma 1 there
always exists a vertex in a three colored component such that the resulting graph has

.components with 2 colored vertices or less. If the most colored vertices in a component at any



given time is 3, then the most different colors.iffpossible in a component is 3. Therefore it is
possible that Player One would need to use a fourth color to return the graph to components
containing only three colors. So y(G) £ 4.

Q.E.D.

The theorem above can potentially help create a full characterization for tree graphs. This
would allow us to determine which trees correspond to differing game-chromatic numbers.
One would be able to quickly analyze a tree and state assuredly for what numbers of colors
Player One has a winning strategy.

There are four different ways trees can be categorized by utilizing a graph-coloring game
using G, a tree. The four different categories are y(G)=1, y(G)=2, y(G)=3, y(G) = 4.

®

Let G be a tree. In order for the game-chromatic number to be equal to one, the chromatic

v(G)=1

number must also be equal to one. The only case where this happens is if G only has one vertex.

v(G)=2

O OO

Let G be a tree. In order for the game-chromatic number to be equal to two then G must
contain P, or P; . Player One must have at least 2 different color%available in order have a

winning strategy.

v(G)=3 ‘
Let G be a tree. In order for the game-chromatic number to be equal to 3, G must contain at
least a P, but not the figure below.

v(G) =4

® © @
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Consider the diagram above. The game-chromatic number of the graph above is 4. This can be
shown by playing a graph-coloring game using the graph above and 3 colors.

Player One’s strategy is to initially color one of the central vertices, 1,2...,6. ¢

Player Two responds by coloring a vertex, 2 vertices away.
e If Player One colors vertex 1, Player Two colors vertex 4 the same color.
e If Player One colors vertex 2, Player Two colors vertex 5 the same color.

e

o ol
: ‘}\M‘f o

o8



e |f Player One colors vertex 3, Player Two colors vertex 6 the same color.
e If Player One colors vertex 4, Player Two colors vertex 1 the same color.
e If Player One colors vertex 5, Player Two colors vertex 2 the same color.
e If Player One colors vertex 6, Player Two colors vertex 3 the same color.
Now, we can generalize this strategy in a way that will simplify the results. Player Two is
always able to create a component that looks like the figure below.
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In doing so, Player One is presented with several options. Player One can color outside the
component thus leaving what is inside untouched. Player Two would then choose to color
vertex 7 green. This forces Player One to color vertex 2 in order to prevent an uncolorable
vertex from being created but assists in the process nonetheless. In coloring vertex 2, vertex 3 is
now adjacent to two different colors and two uncolored vertices which Player Two can color
and make vertex 3 uncolorable.

The more important case is where Player One chooses to color inside the component:

Player One should not color vertices 2 or 3 using a second color because Player Two would
respond by coloring one of the leaves of the adjacent uncolored vertices using a third color thus
creating an uncolorable vertex for Player One as you see below.

Thus one option for Player One would be to color one of the leaves of the component; vertices
7, 8,11, or 12. Using a second color would only help Player Two so the choice is to color one of
these vertices using the same color already present in the component. Since this component is
symmetrical we need not look at each individual case for coloring. If Player One colors one of
the leaves Player Two will respond by coloring a leaf two vertices away with a second color.

&

Player One again always has the option to ignore this component and color outside however it
would only benefit Player Two. Player One must color vertex 2. If he does not, Player Two will



be able to color vertices 3 or 7 using a third color and create an uncolorable vertex. This
presents a dilemma though, in coloring vertex 2 Player One must use his third color, which then
vertex 3 is now adjacent to two different colors which, as seen in the case above would allow
Player Two to color vertex 8 and make vertex 3 uncolorable.

We have therefore arrived a point where Player One cannot win with three colors.

While the first three characterizations are true, and can be shown, the last merely implies that
if our initial graph is contained in a larger graph G then the game-chromatic number will be
four. What has yet to be found is that if this graph is not a subgraph of G then the game-
chromatic number must be 3 or less.
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Cycle Graphs



A cycle graph is a graph that contains three or more vertices connected in a single closed
loop. Below is an example of a cycle graph containing a loop of 5 vertices each of degree 2. It is
not possible for a cycle to have less than 3 vertices. If there are less than 3 vertices, there
cannot be a loop and every vertex will not be degree 2. ‘

4 3

Theorem 7: If G is a cycle, then the degree of every vertex is 2.

Proof
Let G be a cycle graph and assume that there exists a vertex a which is at least

degree 3. This means the third vertex connected to a is either part of an interconnected loop or

it is a leaf. Both of these conditions would violate the definition of cycles. There no longer

would be a single closed loop. Therefore if G is a cycle then the degree of every vertex is 2.
Q.E.D. ‘

There are two important classes of cycle graphs; cycles containing an even number of
vertices, and cycles containing an odd number of vertices . This accounts for every possible

variation of cycle graph.

Figure B

Figure A and Figure B are representative of all classes of cycle graphs. In
attempting to determine the chromatic number of Figure A we begin by coloring an initial point
and from there alternating between the two available colors. Begin by coloring vertex 1 green
and move clockwise around the cycle graph alternating colors. The result is:

Figure A




The chromatic number of Figure A is 2. As shown in Theorem 0.1 it is not possible for the
chromatic number to be equal to 1 in a graph with at least two adjacent vertices.

In attempting the same method with Figure B we reach a different result. Begin by
coloring Vertex 1 and color clockwise, alternating colors every vertex. The result is:

In Figure B it is clear that using 2 colors is not adequate for the graph to be fully colored.
Vertex 5, when using this method and only 2 colors is uncolorable. Therefore the chromatic
number of Figure B must be 3. Generalizing the two classes of cycles we can show for all cases
what the chromatic number of varying cycles will be.

Theorem 8: If G is a cycle with an even number of vertices, x(G) = 2

Proof.

Suppose G is a cycle with an even number, A, of vertices. Let vertex 1 be the starting
point in the graph for coloring. Clockwise around the cycle from vertex 1 each vertex is labeled
sequentially up to A. '

Color Vertex 1 Red. Alternate red and green around the cycle until reaching
vertex 1. As defined, all vertices that are odd will be red, and all vertices that are even will be
green. The only case where two even numbers, or two odd numbers would be adjacent is if 1
and A are the same.

As defined earlier, A is even therefore if G is a cycle with an even number of
vertices x(G) = 2.

Q.E.D.

Theorem 9: If G is a cycle with an odd number of vertices, x(G) = 3

Proof. -

Suppose G is a cycle with an odd number, B, of vertices. Let vertex 1 be the starting
point in the graph for coloring. Clockwise around the cycle from vertex 1 each vertex is labeled
sequentially up to B. ,

Color Vertex 1 Red. Alternate red and green around the cycle until reaching
vertex 1. As defined, all vertices that are odd will be red, and all vertices that are even will be
green. The only case where two even numbers or two odd numbers would be adjacent is if 1
and B are the same. : ‘ ,

As defined earlier, B is odd, therefore if only 2 colors are available and coloring
begins at vertex 1 then vertex B is uncolorable. In order for vertex B to be colored then we must
use a third color. If G is a cycle with an odd number of vertices then x(G) = 3.

Q.E.D.



Theorem 10: If G is a cycle , then y(G) =3 _
Let G be a cycle. Let us analyze a graph-coloring game using 2 colors, red and
blue. We assume Player Two has a winning strategy.
o Initially Player One colors a vertex m, red.
o Adjacent to m there exists two open vertices, as shown by Theorem 8,
which are now adjacent to the color red.
o Player Two colors adjacent to one of the open vertices adjacent to vertex m with
blue. ‘ ‘
According to the Theorem 8, every vertex in G is of degree 2 therefore there exists a
vertex such that if Player Two colors it with the second color an uncolorable vertex is created.
Therefore 7 (G) must be greater than 2. We will now repeat the same graph-coloring
game with 3 colors.. The max degree of G is 2. As shown in Theorem 2, the game-chromatic
number £ max degree of G plus.one which, in this case, implies the game-chromatic number is <
3. We have already shown the game-chromatic number is not 2, hence, it must be 3.
Q.E.D.

Complete Bipartite Graphs
A complete bipartite graph is a graph with two non-empty sets of vertices, L and R, such
that every pair of vertices, one from L and one from R, are adjacent. Complete bipartite graphs
are denoted as K; - where | and r are the sizes of the two sets of vertices.
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The graph above is the complete bipartite graph, K3 ,, where|L| = 3 and |R| = 2. The
set of vertices, L, are placed on the left while the the set, R, are on the right. The figure above
clearly illustrates the adjacency relationship between both L and R.

Theorem 11: If G is a complete bipartite graph then x(G) = 2.
Proof. : '

Suppose G is a complete bipartite graph, K; ,.. By the definition of complete bipartite
‘graphs we know that all vertices in L are adjacent to all vertices in R. Therefore since there is no
inter-adjacency within L, all vertices in L can be colored using one color. Logically then, all
vertices in R can be colored using a second color. Therefore, the chromatic number of all
complete bipartite graphsis 2.

Theorem 12: If G is a complete bipartite graph where L or R = 1 then y(G) =2.
Proof.

Let G be a complete bipartite graph, K; ., where |[L| = 1and |R| = 1. Consider the game
using G and 2 colors. Player One colors the vertex in the set of vertices}? Therefore, the entire
set of g'vertices can be colored using the second color no matter what Player Two’s response is.

et G be a complete bipartite graph, K'éq,,where L] = 1and |R| = 1. Consider the
game using G and 2 colors. Using the same argument, Player One initially colors the only vertex
in the set of q vertices. This allows for the entire set of n vertices to be colored by any color.
Therefore in both cases, the game-chromatic number of complete bipartite graphs when
norq=1is2. ‘ '

D00

Theorem 13: If G is a complete bipartite graph where | and r 2 2, then y(G) = 3.
Proof.
Let G be a complete bipartite graph, K; ., wheren = 2 and q = 2. Consider the game
using G and only 2 colors, red and green.
e Player One colors a vertex inL green.
e Player Two responds by coloring a second vertexin L red
All the vertices in R are now uncolorable. Player One needs at least 3 colors in this situation.
Therefore, now take a look at the game using G but this time with 3 colors, red, green,
and blue: : o

f"\)‘iy\o“
e Initially Player One colors a vertex in L green N Fo cardihé =

e Player Two responds by coloring a second vertex in L red. &5 Vv VU By vi-.
e Player One’s second move is to colpr a vertex inR blue. =
From this point, the entire set of vertices g>can be colored blue and the entire set, Nv can be 2
?

colored either green or red. It is not possible for Player Two to force a fourth color no matter )



how large L orR are. Therefore for the graph-coloring game using, K; ., wheren > 2 and q > 2
the game-chromatic number is 3.

Q.E.D

Wheel Graphs

A wheel graph, more commonly referred to as an n-wheel, is a graph that contains a
cycle of n-1 vertices all connected to a single vertex. Therefore degree of the central vertex is n
—1, and all remaining vertices are of degree 3.

2 3

5 4

Represented in the figure above is a 5-wheel. There is a cycle of 4 vertices all connected
to vertex 1. Vertices 2,3,4,5 as described above then are degree 3 whereas vertex 1 is degree 4.
These are the basic properties that are required for a graph to be a wheel.

Wheels can be separated into two different categories; K-Wheels in which the k-1 cycle
is even and the other is where the k-1 cycle is odd. This the distinguishing characteristic
between wheels.
' OF g YO
Theorem 14: If G is K-Wheel where K is even number greater than 4, then x(G) = 4 and y(G) = 4.
Proof. “ '

Suppose G is a K-wheel containing a K-1 cycle, where K-1 is odd. Coloring an odd
numbered cycle requires 3 colors. This is shown in Theorem 6. Hence to color the center
vertex, which is adjacent to the entire cycle, we need a fourth color.

In order to determine the game-chromatic number for a graph-coloring game using G
we reference back to our initial definitions. The game-chromatic number must be at least equal
to the chromatic number of the graph. »

In a graph-coloring game using G and 4 colors; red, blue, green, and orange, we begin
with the following Strategy for Player One:

e |Initially color the central vertex red.
e Color remaining vertices as allowed.

Following Player One’s initial move all remaining uncolored vertices are now adjacent to
only two uncolored vertices. All outer vertices cannot be colored red which leaves only 3
available colors. Therefore it is impossible for Player Two to color such that there is an
uncolored vertex adjacent to 4 different colors.

Q.E.D.

Theorem 15: If G is a K-Wheel where K > 7 and is always-odd, then x(G) = 3 and y(G) = 4.
Proof.

Let G be a K-wheel which contains a K-1 cycle, with K-1 atways:being even. As
shown in Theorem 5, coloring an even numbered cycle requires 2 colors. Hence to color the



final vertex, which is adjacent to the entire cycle, a third color is needed. So, the chromatic

. number of Gis 3.

In order to determine the game-chromatic number for a graph-coloring game using G
we reference back to our initial theorems. The game-chromatic number must be at least equal
to the chromatic number of the graph. _

In a graph-coloring game using G and 3 colors; red, blue, green, we begin with Player
One. e
e |Initially color the central vertex red.
e Player Two colors an arbitrary vertex, Z, green.

There are now two uncolored vertices adjacent to two different colors. Player One can
choose to color adjacent to vertex Z using a third color. Howevey, since K 2 6, Player Two can
color adjacent to the remaining uncolored vertex withthe orange thereby making it
uncolorable. If Player One chooses not to color adjacent to'vertex Z then by the same argument
Player Two can force Player One to use a fourth color.

There is one alternate case that must be analyzed as well.

e Player One colors an arbitrary vertex, V, red.
e Player Two then colors the central vertex ora‘gge.

There exists two uncolored vertices, adjacent to V, that are adjacent to two different
colors. It is not possible for Player One to color both vertices adjacent to V4herefore Player Two
on his/her following turn can color one of the uncolored vertizégga];cent to V with orange.

“This means for Player One to be able to%vin he/she must have at least 4 different colors

available. .
Hence, as shown in Theorem S, in graph-coloring game using G and 4 colors Player One
has a winning strategy. By initially coloring the central vertex Player One has colored the only
vertex with a degree greater than 4. Therefore it is not possible for Player Two to create an
uncolorable vertex. So, the game-chromatic number of K-Wheels, where K is odd, is 4.

QE.D KL st



